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We explicitly construct elements with high multiplicative order in any extensions of finite fields based on cyclotomic
polynomials.
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1. Introduction . It is well known that the multiplicative group of a finite field is cyclic [1, 2]. The
problem of constructing efficiently a generator of the group for a given finite field is notoriously
difficult in the computational theory of finite fields. That is why one considers less restrictive ques-
tion: to find an element with high multiplicative order [2]. We are not required to compute the exact
order of the element. It is sufficient in this case to obtain a lower bound on the order. High order
elements are needed in several applications: cryptography, coding theory, pseudo random number
generation, combinatorics.

Throughout this paper Fq is a field of q elements, where g is a power of prime number p.

Fq* is the multiplicative group of ;. |§ denotes the number of elements of finite set S. A par-

tition of an integer C is a sequence of such nonnegative integers uy,E ,u,. that Zj_ |

juj=c.
U (C,d) denotes the number of partitions of C, for which ul,E ,Uuc ! d. !"# denotes the group
generated by !, and G! H — the direct product of groups G and H . Foraprime Kk, !(l)

is the highest power of Kk dividing integer | .
Gao [3] gives an algorithm for constructing high order elements for many (conjecturally all)
general extensions qu of finite field F,. Voloch [4, 5] proposed another method for general ex-

tensions. For special finite fields, it is possible to construct elements which can be proved to have
much higher orders. Extensions based on the Kummer or Artin — Schreier polynomials are consid-
ered in [6 — 8]. A generalization of the extensions is given in [9].

Extensions connected with a notion of Gauss period are considered in [10 — 12]. More precisely,
the following extensions are constructed. Let r =2s+1 be a prime number coprime with . Let

g be a primitive root modulo r, that is the multiplicative order of @ modulo r equals to

r!1. Set Fy(0)=F,1=Fy[x)/®,(x), where ! ) =X"T+ X2 +E #x+1 isthe rthcy-

clotomic polynomial and 6 = x(mod®, (x)). It is clear that the equality ©'=1 holds. The ele-
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ment ! =" +"#1 s called a Gauss period of type ((r—1)/2,2). It generates normal base over
Ry (111,
oriir2

It is shown in [10] that [ has high multiplicative order: at least . Bounds of such
kind: explicit and for any p and r, are of special interest in applications (particularly, cryptog-

raphy). The bounds allow to compare simply different field extensions.
The bounds using partitions U((r! 3)/2,p! 1) [11], U(r—2,p—1) [12] or asymptotic bound

exp[(% fl—% + 0(1)jx/r —1] [11] do not allow to obtain a bound on the element order for

fixed finite field. Explicit bounds in terms of p and r are derived in [12] from bounds in terms
of partitions. However, such bounds are obtained only for r! p2 +2 and r < p+2. Important

in applications case p+2! r < p2 +2 remains not described.

That is why we give in this paper better comparatively with [10] explicit lower bounds for any
p and r both on the order of element [ and similar form elements. To obtain the bounds we

count solutions of a linear Diophantine inequality instead of counting partitions. Our main result is
Theorem 2.
2. Preliminaries. Let c,d be positive integers (d < ). Denote by L(c,d) the set of solu-

tions (ug,E ,uc) of the following linear Diophantine inequality:

c
1]

jup ! c, (1)
j=1

with the condition 0 < u; E ,Uc <d.
For the extension Fq(!) we prove the following three lemmas.

Lemma 1 Let a be any norzero element in the finite field,. If solutions (u1,E ,up )
and (vi,E ,v,») from L(r! 2,p! 1) are distinct then the products # ::i(l I+a)¥  and
H:j ©®1 +a)"i are not egal.

Proof. We prove Lemma 1 by the way of contradiction. Assume that solutions (Ug,E , Uy 2)

and (v,E ,V;12) fromtheset L(r! 2, p! 1) are distinct, and the products are equal:

2 2
# ()t =g ()t

=1 =1

Since the polynomial ! ((X) is minimal polynomial for the element ! , we write
r-2 _ -2 _
[T +a)" = [T +a)"1 (modd, (x)).
=1 =1
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SHARPENING OF THE EXPLICIT LOWER BOUNDS ON THE ORDER ... 817

As there are polynomials of degree r—2 <deg®,(x) on the left- and on the right-hand side of the

equality, these polynomials are equal as polynomials over Fq, ie.,

rr2 _ rr2 _
"l =" (). 2)
j=1 j=1

Let k be the smallest integer for which Uy # Vi and, say Uy > Vi . After removing common
factors on both sides of (2), we obtain

| rt2 ) rl2 )
(xk + a)uk. Ve n (x] + a)u_, - n (xj + a)v_/ ) 3)
Jj=k+1 Jj=k+1

nort2 (x) +a)"i by b. Itisclear that b! 0.

Denote the absolute term of the polynomial =kl

Then there is the term
(Mk | vk)auk! Vk! lbxk

on the left-hand side of (3) with minimal nonzero power of X. Since O! u, v ! p" 1, up! v,
a,b! 0, the term is nonzero. And such term does not occur on the right-hand side, which makes
the identity (3) impossible.

Lemma 1 is proved.

Lemma 2 Let a be such nozrero element in the finite fieIch that a®# —1. If solutions
(w,E Ui gy2) and (vi,..., Vi) from L((r! 3)/2,p! 1) are distinct then the products
# (jrz"la)/z (@ +D¢ ! +a)" and # (jr:"l3)/2[(a! T+ +a)]Y are not equal.

Proof. Assume that solutions (uj,E Uit 3)2)  and (vi,E V(ri13)y2) from the set
L((r! 3)/2,p! 1) are distinct, and the products are equal:

(r-3)/2 ) _ (r-3)/2 _ .
(@) +1)®0) +a)]" = [] (@8 +1)e’ +ay" .
j=1 j=1

Then, analogously to the proof of Lemma 1, we obtain the following equality for polynomials of
degree r! 3<deg" ;(X):

(r-3)/2 (r-3)/2

[T e+t +a)™ = ] [ +1x! +a) . (4)
j=1 i=1

Let k be the smallest integer for which u; # v, and Ug > V. After removing common factors
on both sides of (4), we have
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32 _ _ (132 _ _
[+ @2 +DxK +a]! Ve " [ax] +D(xd +a)] T = " [(ad +pxd )i . (5)
j=k+1 j=k+l

(r-3)/2

j=k+1 [(axj +:I-)(Xj-l-t’:l)]uj by b. Obviously

Denote the absolute term for the polynomial

b! 0. Applying the multinomial formula to [aX2k + (a2 + l)Xk + a]u"! Vk', we obtain that there is
the term

(U — Vi )@ + 1)atk kK

in the polynomial on the left-hand side of (5) with minimal nonzero power of X. Since 0! uy,

Vi Sp-1, ue! v, a’! " 1, a,b! 0O, the term is nonzero. And such term does not occur on

the right-hand side, which leads to a contradiction.
Lemma 2 is proved.

Lemma 3. Let a be such normero element in the finite field:q that a®! 1. If solutions

(uy,....u,_) and (W,E,v2) from L((r-3)/2,p-1) are distinct then the products
# « 3)/2[(61' Fepel +a)"% and # « 3)/2[(61! I+ +a)"Y]Y are not equal.

Proof. Assume that solutions (ul,E JUrray2)  and  (Vi,...,Vr13y2)  from the set
L((r! 3)/2,p! 1) are distinct, and the products are equal:

(r*3)/2 ) (r" 3)/2

# @ +nti+a = # @l ne v,

j=1 j=1

Then, analogously to the proof of Lemma 1, we obtain the following equality for polynomials of
degree r! 3<deg"” ;(x):

(r-3)/2 ) ] (r-3)/2 ) )
[T @+ +a)" = ] [(ax) +D"(x! +a)" . (6)
j=1 j=1

Let k be the smallest integer for which u; #v;, and Ug > V. After removing common factors
on both sides of (6), we obtain

BNCET-E L BNGETZEN .
(ax®+2)" "™ (@ + DY (x +a) S = (R a) R (e + D) (T +a) . (T)
j=k+1 J=k+1

1] (r' 3)/2

Denote the absolute term for the polynomial k4l (ax’ + N (x! +a)"i by b, and the abso-

1] (r' 3)/2

lute term for the polynomial k4l (axj +1)" (x! +a)" by €. Obviously b,c! 0. Since

absolute terms on both sides of (7) are equal, the identity b= a'x' k¢ holds. As coefficients near
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k

x* on both sides of (6) are equal, we have (uy — vi)ab = (ug — v )a"* "2

¢, which implies the

Ut Vict 26 Comparing the identities, we obtain a® =1 — a contradiction to the lem-

identity b=a
ma assumption aZl 1.

Lemma 3 is proved.

3. Lower bounds based on a humber of linear Diophantine inequality solutionsAll lower

bounds on elements order in Theorem 1 below involve a number of solutions (ul,E ,Uc) of the
linear Diophantine inequality (1), where 0! u;,E ,u, ! p" 1. We use for the proof of parts (a),
(b), (c) of the theorem a technique similar to that in [10 — 12]. The idea was introduced by Gathen
and Shparlinski [10], and developed in [11, 12]. We take a linear binomial of some power of !
and all conjugates of it, that also belong to the group generated by the binomial, and construct their
distinct products. In this case, the conjugates are nonlinear binomials. To obtain the bounds we
count solutions of a linear Diophantine inequality instead of counting integer partitions.

Theorem 1 Let e be ary integer, f be any integer coprime withr, a be any nomero

element in the finite fieIdFq . Then

l

(a) & s a) has he multiplicative order at leastL(r! 2,p! 1)

() (""+a)"+a) for a®! "1 has the multiplicative order at leagtL((r! 3)/2, p! 1)
and this order dides " 9’21 1,

(c) !"Ze(! o +a)(! f +a)"1 for a?!1'1 has the multiplicative order at least
|L((r! 3)/2,p! 1)| and this ader divides q"™'% +1,

(d) !'°t"+a) for a®! +1 has the multiplicative order at lea$t((r ! 3)/2, p! 1)|2/2.

Proof. (a) First we show that ! &( Fy a) has the same order as 09(@+a), where g=
=ef _1(mod r). Clearly the map, taking ! to !?, is the Frobenius automorphism of the field

Fq('). Since q is primitive modulo r, the congruence f ! q™(modr) holds for some integer

m. As ( isapowerof p, themap,sending ! to ! F=19"isa power of the Frobenius au-
tomorphism and, therefore, is also an automorphism of the field Fy(!). Since the last examined
automorphism takes ! 9(! +a) to ! & L a), multiplicative orders of these elements coincide.

So, to prove (a), it is sufficient to show that ! 9(! +a) has the multiplicative order at least
IL(r—2,p-1)].
As ¢ is primitive modulo r, foreach j=1,...,r—2, an integer o(j) exists such that

g 9" (jmodr) . The powers
( qg? "G D o
s va))! = e a0 vy =190 1)

belong to the group !" #(" +a)#. For every solution from L(r—2,p—1) we construct the follow-

ing product:
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M2 0" 2ju 2 2
H I )l =17V g )4t = 19D H (] 4 g)Y
j:l j:l j:l

that also belong to the group. Note that all these products have the same factor ! 9r2), According
to Lemma 1, if two solutions (u1,E ,u,12) and (W,E ,V,_5) from L(r! 2,p! 1) are distinct,

" . " .
then the products # ;: : (' +a) and # ;: : (!/ +a)" are not equal. Hence, the products

19024 :zf (1) +a)% and 1807 DH ;zi (17 +a)" , corresponding to distinct solutions, cannot
be equal and the result follows.

(b) The order of the group F;r_l equals o ¢" 11 1=(¢"" V21 1)(¢"" P2 +1). Note that
since  is primitive modulo r, and r is prime, the congruencies ¢" Hhw I(modr) and

g 9’2" 1 1(modr) are true. Then
%6 +a) " = A O L aye o) = (0 v a)e +a).

and so, the order of (I T+a)(! T +a) divides q(“ D121 1. We show that (! T a)(! f +a)
generates the group of the order at least |L((r ! 3)/2, p! 1)| . Indeed, since the field automorphism,

! f

taking 0 to , sends (! " +a)(!! +a) to V'S +a) () +a , multiplicative orders of these
g p

elements coincide. Hence, it is sufficient to prove that
o) +a) =1 @ + D) +a)

has the multiplicative order at least |L((r! 3)/2, p! 1)|.
As Q is primitive modulo r, for j=1,E ,(r! 3)/2, an integer ! (j) exists such that

g " j(modr). The powers

(et et = @ e va)

belong to the group " *L(a" +1)(" +a)$. For every solution from the set L((r — 3)/2, p—1), we

construct the following product:

3z _ "
# I @+l +a)]! =
=1
..#(r"s)lzju'(r"S)IZ ) . o (r"3)/2 . .
=T g @+ e =G (@ ) +a)]
j:l j=1

m!(rt3)/2

that also belong to the group. Note that these products have the same factor . According
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to Lemma 2, if two solutions from  L((r! 3)/2,p! 1) are distinct, then the products
H 5,:13)/2 [(@/+D( 7 +a)]" and ngz_lg)lz[(aej +1)(67 +a)]" are not equal. Hence, the result
follows.

(c) Since

(r"l)/2n1 "1)/ "

(r"1)/2n (r"1)/2 " " "
(180 +a) = 1@ D T gy Paa) Tt = 17280 Ty e

the order of ! ze(! Ty a)(! s a)"l is a divisor of q(r! D2 +1. We show that ! "26(! Ty
+a( +a)! generates the group of the order at least |L((r! 3)/2, p! 1)|. Indeed, since the field

" "1 " " " "
automorphism, taking 6 to 1 T, sends 1% (! 1+a)(! +a) Vo 17220 T+ T+a)'!,

multiplicative orders of these elements coincide. Hence, it is sufficient to prove that
" "1 " " "
172 ey va) b=t @ D) +a)

where t=1! 2ef'11 1, has the multiplicative order at least |L((r 1'3)/2,p! 1)| .
As Q is primitive modulo r, for j=LE ,(r! 3)/2, an integer ! (j) exists such that

g " j(modr). The powers
[0° (@0 +1)(0 +a) 17" = 07 (a8 +1)(07 + )

belong to the group 1" '(a" +1)(" + a)*'$. For every solution from the set L((r! 3)/2,p! 1), we
construct the following product:

(r'3y/2 ) ) . t#(r"3)/2ju'(r"3)/2 ) ) ;
$ i@l =T T g @+l +a) Y =
=1 j=1
(r=3)/12 ] )
j=1

| (" 3)/2

that also belong to the group. Note that these products have the same factor . According

to Lemma 3 if two solutions from  L((r—3)/2,p—1) are distinct, then the products
H (jr:"13)/2[(a! T+t +a)' " and l—I(J.r:_f)/z[(aGj +1)0) +a)™]" are not equal. Hence, the
result follows.

(d) Recall that the order of F;,_l equals to qr! tra= (q(” DIz l)(q(” D2 +1). Factors

q("! D2 (r'n/2

and g¢q +1 have the greatest common divisor 2, since their sum equals to
2q(r_1)/2 . Consider the subgroup of F;r! 1 generated by ! (! F+ a) . This subgroup contains two

subgroups: first one is generated by
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(r'1)/2

w =% T+ay® T =0"T+a¢+a),

and second one — by
_ rnenf oD2_1 _ -2e/n-f f -1
wy, =[0°(6" +a)] =070  +a)o +a) .

According to part (b), the order of w; divides q(” D211, and according to part (c), the order of

(r' /2

wy divides ( +1.

Construct the element

wiw, if (P21 =2,
W:

wiws if pa(g P2 +1)=2

If ! Z(q(r" DIz 1) =2, then (q(r! Dz 1)/2 is odd and coprime with q(” DIz 41, Clearly the
order of W12 is a divisor of (q(r! D2y 1)/2 . Hence, in this case, !z" =!w{"#!w,". Similar to the

previous consideration, if ! Z(q(r" DIz 1) =2, then (2)=(wy)Xx (W3). In both cases, the order of

W is the product of the orders of Wy and W, divided by 2. According to part (b) and part (c), the

order of W, and so, the order of ! “(! +a) isatleast |L((r! 3)/2, p! 1) |2/2.
Theorem 1 is proved.
Corollary 1. The Gauss perioc has the multiplicative order at leas

L(r! 2,p! 1)| and
this order divides ¢ Y21 1.

Proof. It follows from Theorem 1, part (a) that the multiplicative order of
| = gl #1("2+1) isatleast |L(r! 2,p! 1)|. Since

-b12_q (112

B _ ()12 P _ e
©+067) =07 T +077 )e+o ) T=(0t+o)0+0 )t =1,
the order of B divides q' D21,
Corollary 1 is proved.
Let a be any nonzero element in Fq. We use below the following denotations:
B2y if pa(a" V2 -1=2,

By? it pa(a" V2 +1)=2.

Corollary 2. The element z for a?#1 has the multiplicative order at least
IL(r! 2,p! D||L(r! /2, p! D)|/2.
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Proof. According to Corollary 1, ! has the order that divides q(” D211 and is at least
|IL(r! 2,p! 1)|. According to Theorem 1, part (c) (if to put e = 2! l(modr), f=1), ! hasthe
order that divides q(” D2 41 and is at least |L((r! 3)/2,p! 1)|. Analogously to the proof of
Theorem 1, part (d), the order of z is the product of the orders of ! and ! divided by 2.

Hence, the result follows.

Corollary 2 is proved.
4. Explicit lower bounds on orders for any p and r. Explicit lower bounds on the orders

of finite field elements in terms of P and I are of special interest in applications. That is why

we count in this section a number of solutions of the linear Diophantine inequality to derive explicit
lower bounds on the multiplicative orders of the examined elements ! (! s a) and z.
Lemma 4. The number|L(c,d)| of solutions ofihear Diophantine inequality1) with the

condition 0! u,E ,u.! d, is at least

@+DV%2 if d=12,

5V22 if d>4.
Proof. Let !, 11 " ! d, be an integer which we shall choose later. Take the biggest integer
I such that Ziazliﬁ <c. Since
Hit =" +D2<1(" +1)2/2,

i=1

we choose o from the inequality ! (" +1)2 #2c, thatis ! = §12c/" 8{6 1. Clearly, if to take
u! {O,E,"#1 for i=0,E,! and u,=0 for i=! +1,E ,c, we obtain a solution of (1).
The number of such solutions equals to (! + 1)" #(+ 1)"2C/! $2 - (r+ 1)V2C” (" + 1)2 .

To choose !, we find maximum of the numerator f(!)=( + 1)“20“ of the last bound. Ob-

viously ! =d inthecase d=12.
So, we assume below that d! 4. Represent the numerator in the form  f(!)=

= exp (ln(! +1)4/2c¢/! ) Then we have
qu=c+nﬁﬁJ£F%%E#m%§9%

1, In( +2)

1 > =0. The value 3,92155< §g < 3/92155E is a point

If to write f!(") =0, then
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of function maximum. The nearest integer to maximum is ! =4 . The function f(! ) monoton-
ically decreases for ! " !y, and the denominator (&+ 1)2 monotonically increases. Hence, we
take ! =4 1in this case, and the result follows.

Lemma 4 is proved.
Our main result is the following theorem that gives explicit lower bounds on the elements orders.
Theorem 2 Let q be a power of prime numbep, r =2s+1 be a prime number coprime

with g, q be a primitive root modulcr, 6 generates the extensich(!)qu,--l, e be any

integer, f be any integer coprime wittr, a be any nomero element in the finite fiel(F;.
Then
0#2\[2“!2)!2 |f p=2’

(@ 1% " +a) has the multiplicative order at Iea:$£3m! 2 if p=3
%
R LR

22\/@—5 if

() 180 " +a) for a®! +1 has the multiplicative order at lea:{ 3V2r-3-4;5 it p=3
57345 if p>s,

# 2(\/§+1)m! 5 |f p — 2,

0,
(c) z for @®! 1 has the multiplicative order at Iea:$£3(\/§+1)m/2! 412if p=3

%

Proof. (a) According to Theorem 1, part (a) and Lemma 4.
(b) According to Theorem 1, part (d) and Lemma 4.

(c) According to Corollary 2 and Lemma 4.

Theorem 2 is proved.

We obtain the following corollary from Theorem 2.

#2\[2(” 2)12 if p= 2,

%
Corollary 3. The Gauss perio3 has the multiplicative order at lea: $93,m! 2 if p=3,

The bound in Corollary 3 improves the previous bound ZM! 2 from [10] on the multiplica-
tive order of the element ! .
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