2019
Том 71
№ 11

All Issues

The third mixed problem for the Sonin equation in a half space

Malyts’ka H. P.

Full text (.pdf)


Abstract

We consider follwing mixed boundary-value problem: $$\begin{array}{*{20}c} {u'_t (t,R) + xu'_y (t,R) + yu'_z (t,R) = u''_{x^2 } (t,R) + f(t,R)} \\ {in \Pi _T = \{ (t,R),0< t \leqslant T,R = (x,y,z),R \in E_3 ,0< x\} ,} \\ {u(0,R) = u_0 (R),u'_x (t,0,y,z) + \beta (t)u(t,0,y,z) = g(t,y,z).} \\ \end{array}$$ A solution of this problem is obtained in the form of a potential.

English version (Springer): Ukrainian Mathematical Journal 45 (1993), no. 8, pp 1236-1243.

Citation Example: Malyts’ka H. P. The third mixed problem for the Sonin equation in a half space // Ukr. Mat. Zh. - 1993. - 45, № 8. - pp. 1109–1114.

Full text