On the Stability of the Maximum Term of the Entire Dirichlet Series
Abstract
We establish necessary and sufficient conditions for logarithms of the maximal terms of the entire Dirichlet series $F(z) = \sum^{+\infty}_{n=0}a_n e^{z\lambda_n}$ and $A(z) = \sum^{+\infty}_{n=0}a_n b_n e^{z\lambda_n}$ to be asymptotically equivalent as ${\rm Re}\;z \rightarrow +\infty$ outside some set of finite measure.
English version (Springer): Ukrainian Mathematical Journal 57 (2005), no. 4, pp 686-693.
Citation Example: Skaskiv O. B., Trakalo O. M. On the Stability of the Maximum Term of the Entire Dirichlet Series // Ukr. Mat. Zh. - 2005. - 57, № 4. - pp. 571–576.
Full text