Том 71
№ 11

All Issues

Lower types of $δ$-subharmonic functions of fractional order

Zabolotskii N. V.

Full text (.pdf)


It is proved that the lower types of functions $T(r, u)$ and $N(r, u) = N(r, u_1) + N(z, u_2)$ relative to the proximate order $ρ(r)$ of a function $u=U_1−u_2$ of fractional order $ρ δ$-subharmonic in $ℝ^m, m > - 2,$ coincide, that is, are simultaneously minimal or mean. In the case of an arbitrary proximate order $ρ(r)$, the assertion is, in general, false.

English version (Springer): Ukrainian Mathematical Journal 44 (1992), no. 9, pp 1172-1175.

Citation Example: Zabolotskii N. V. Lower types of $δ$-subharmonic functions of fractional order // Ukr. Mat. Zh. - 1992. - 44, № 9. - pp. 1280–1284.

Full text