Separately $Fσ$-measurable functions are close to functions of the first baire class
Abstract
We prove that a Borel separately $Fσ$-measurable function $f: X \times Y → R$ on the product of Polish spaces is a function of the first Baire class on the complement $X × Y \backslash M$ of a certain projectively meager set $M ⊂ X × Y$.
English version (Springer): Ukrainian Mathematical Journal 56 (2004), no. 4, pp 628-640.
Citation Example: Banakh T. O., Vovk M. I. Separately $Fσ$-measurable functions are close to functions of the first baire class // Ukr. Mat. Zh. - 2004. - 56, № 4. - pp. 573–576.
Full text