Pritula N. N.
Differential-geometric structure and the Lax – Sato integrability of a class of dispersionless heavenly type equations
Hentosh О. Ye., Pritula N. N., Prykarpatsky Ya. A.
Ukr. Mat. Zh. - 2018. - 70, № 2. - pp. 293-297
This short communication is devoted to the study of differential-geometric structure and the Lax – Sato integrability of the reduced Shabat-type, Hirota, and Kupershmidt heavenly equations.
The fifteenth scientific session of mathematical commission of the Shevchenko Scientific Society
Pritula N. N., Samoilenko A. M.
Ukr. Mat. Zh. - 2004. - 56, № 11. - pp. 1584
Finite-Dimensional Nonlocal Reductions of the Inverse Korteweg–de Vries Dynamical System
Pritula N. N., Vorobyova O. V.
Ukr. Mat. Zh. - 2004. - 56, № 2. - pp. 160-168
We study finite-dimensional Moser-type reductions for the inverse nonlinear Korteweg–de Vries dynamical system and the Liouville integrability of these reductions in quadratures.
Lie-algebraic structure of integrable nonlinear dynamical systems on extended functional manifolds
Ukr. Mat. Zh. - 1997. - 49, № 11. - pp. 1512–1518
We consider the general Lie-algebraic scheme of construction of integrable nonlinear dynamical systems on extended functional manifolds. We obtain an explicit expression for consistent Poisson structures and write explicitly nonlinear equations generated by the spectrum of a periodic problem for an operator of Lax-type representation.
Nonlinear integrable systems related to the elliptic lie—baxter algebra
Pritula N. N., Sidorenko Yu. M., Strampp W.
Ukr. Mat. Zh. - 1996. - 48, № 2. - pp. 220-235
We construct a hierarchy of Poisson Hamiltonian structures related to an “elliptic” spectral problem and determine the generating operators for the equation of asymmetric chiral 0 (3) — field.
Structure of integrable supersymmetric nonlinear dynamical systems on reduced invariant submanifolds
Ukr. Mat. Zh. - 1992. - 44, № 9. - pp. 1292–1295
Based on an analysis of a supersymmetric extension of the algebra of pseudodifferential operators on $ℝ^1$ an infinite hierarchy of supersymmetric Lax-integrable nonlinear dynamical systems is constructed by means of the Yang-Baxter $ℛ$-equation method. The structure of these systems on reduced invariant submanifolds specified by a natural invariant Lax-type spectral problem is investigated.
The complete integrability analysis of the inverse Korteweg-de Vries equation
Pritula N. N., Samoilenko V. G., Suyarov U. S.
Ukr. Mat. Zh. - 1991. - 43, № 9. - pp. 1239–1248
Analysis of integrability of the generalized Kadomtsev-Petviashvili type model
Ukr. Mat. Zh. - 1990. - 42, № 6. - pp. 800–806
Quantum lie algebra of currents ? The universal algebraic structure of symmetries of completely integrable dynamical systems
Fil' B. N., Pritula N. N., Prykarpatsky A. K.
Ukr. Mat. Zh. - 1988. - 40, № 6. - pp. 764–768