2019
Том 71
№ 11

### All Issues

Articles: 3
Brief Communications (Russian)

### On one extremal problem for numerical series

Ukr. Mat. Zh. - 2005. - 57, № 10. - pp. 1430–1434

Let $Γ$ be the set of all permutations of the natural series and let $α = \{α_j\}_{j ∈ ℕ},\; ν = \{ν_j\}_{j ∈ ℕ}$, and $η = {η_j}_{j ∈ ℕ}$ be nonnegative number sequences for which $$\left\| {\nu (\alpha \eta )_\gamma } \right\|_1 : = \sum\limits_{j = 1}^\infty {v _j \alpha _{\gamma (_j )} } \eta _{\gamma (_j )}$$ is defined for all $γ:= \{γ(j)\}_{j ∈ ℕ} ∈ Γ$ and $η ∈ l_p$. We find $\sup _{\eta :\left\| \eta \right\|_p = 1} \inf _{\gamma \in \Gamma } \left\| {\nu (\alpha \eta )_\gamma } \right\|_1$ in the case where $1 < p < ∞$.

Brief Communications (Ukrainian)

### On One Extremal Problem for a Seminorm on the Space $l_1$ with Weight

Ukr. Mat. Zh. - 2005. - 57, № 7. - pp. 1002–1006

Let $α=\{α_j\}_{j∈N}$ be a nondecreasing sequence of positive numbers and let $l_{1,α}$ be the space of real sequences $ξ=\{ξ_j\}_{j∈N}$ for which $∥ξ∥_{1,α} := ∑^{∞}_{j=1}α_j|ξ_j| < +∞$. We associate every sequence $ξ$ from $l_{1,α}$ with a sequence $ξ^∗ = \{|ξ_{φ(j)}|\}_{j∈N}$, where $ϕ(·)$ is a permutation of the natural series such that $|ξ_{φ(j)}| ⩾ |ξ_{φ(j+1)}|,\; j ∈ ℕ$. If $p$ is a bounded seminorm on $l_{1,α}$ and $\omega _m :\; = \left\{ {\underbrace {1, \ldots ,1}_m,\;0,\;0,\; \ldots } \right\}$, then $$\mathop {\sup }\limits_{\xi \ne 0,\;\xi \ne 1_{1,\alpha } } \frac{{p\left( {\xi *} \right)}}{{\left\| \xi \right\|_{1,\alpha } }} = \mathop {\sup }\limits_{m \in \mathbb{N}} \frac{{p\left( {\omega _m } \right)}}{{\sum {_{s = 1}^m } \alpha _s }}.$$ Using this equality, we obtain several known statements.

Article (Russian)

### Estimation of a K-Functional of Higher Order in Terms of a K-Functional of Lower Order

Ukr. Mat. Zh. - 2003. - 55, № 11. - pp. 1530-1540

Let U j be a finite system of functionals of the form $U_j (g):= \int _0^1 g^(k_j) ( \tau ) d \sigma _j ( \tau )+ \sum_{l < k_j} c_{j,l} g^(l) (0)$ , and let $W_{p,U}^r$ be the subspace of the Sobolev space $W_p^r [0;1]$ , 1 ≤ p ≤ +∞, that consists only of functions g such that U j(g) = 0 for k j < r. It is assumed that there exists at least one jump τ j for every function σ j , and if τ j = τ s for js, then k jk s. For the K-functional $$K(\delta, f; L_p ,W_{p,U}^r) := \inf \limits_{g \in W_{p,U}^r} {|| f-g ||_p + \delta (|| g ||_p + || g^(r) ||_p)},$$ we establish the inequality $K(\delta^n , f;L_p ,W_{p,U}^r) \leqslant cK(\delta^r ,f; L_p ,W_{p,U}^r)$ , where the constant c > 0 does not depend on δ ε (0; 1], the functions f belong to L p, and r = 1, ¨, n. On the basis of this inequality, we also obtain estimates for the K-functional in terms of the modulus of smoothness of a function f.