2019
Том 71
№ 11

All Issues

Shao Yuan Huang

Articles: 1
Article (English)

Comparison theorems and necessary/sufficient conditions for existence of nonoscillatory solutions of forced impulsive delay differential equations

Cheng Sui Sun, Shao Yuan Huang

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2012. - 64, № 9. - pp. 1233-1248

In 1997, A. H. Nasr provided necessary and sufficient conditions for the oscillation of the equation $$x''(t) + p(t) |x(g(t))|^{\eta} \text{sgn} (x(g(t))) = e(t),$$ where $\eta > 0$, $p$, and $g$ are continuous functions on $[0, \infty)$ such that $p(t) \geq 0,\;\; g(t) \leq t,\;\; g'(t) \geq \alpha > 0$, and $\lim_{t \rightarrow \infty} g(t) = \infty$ It is important to note that the condition $g'(t) \geq \alpha > 0$ is required. In this paper, we remove this restriction under the superlinear assumption $\eta > 0$. Infact, we can do even better by considering impulsive differential equations with delay and obtain necessary and sufficient conditions for the existence of nonoscillatory solutions and also a comparison theorem that enables us to apply known oscillation results for impulsive equations without forcing terms to yield oscillation criteria for our equations.