2019
Том 71
№ 11

# Shevchuk I. A.

Articles: 20
Anniversaries (Ukrainian)

Ukr. Mat. Zh. - 2019. - 71, № 2. - pp. 147-150

Article (English)

### On one estimate of divided differences and its applications

Ukr. Mat. Zh. - 2019. - 71, № 2. - pp. 230-245

We give an estimate of the general divided differences $[x_0, ..., x_m; f]$, where some points xi are allowed to coalesce (in this case, $f$ is assumed to be sufficiently smooth). This estimate is then applied to significantly strengthen the celebrated Whitney and Marchaud inequalities and their generalization to the Hermite interpolation. For example, one of the numerous corollaries of this estimate is the fact that, given a function $f \in C(r)(I)$ and a set $Z = \{ z_j\}^{\mu}_{j=0}$ such that $z_{j+1} - z_j \geq \lambda | I|$ for all $0 \leq j \leq \mu 1$, where $I := [z_0, z_{\mu} ], | I|$ is the length of $I$, and $\lambda$ is a positive number, the Hermite polynomial $\scrL (\cdot ; f;Z)$ of degree $\leq r\mu + \mu + r$ satisfying the equality $\scrL (j)(z\nu ; f;Z) = f(j)(z\nu )$ for all $0 \leq \nu \leq \mu$ and $0 \leq j \leq r$ approximates $f$ so that, for all $x \in I$, $$| f(x) \scr L (x; f;Z)| \leq C (\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t} (x,Z))^{r+1} \int^{2| I|}_{dist (x,Z)}\frac{\omega_{m-r}(f^{(r)}, t, I)}{t^2}dt,$$ where $m := (r + 1)(\mu + 1), C = C(m, \lambda )$ and $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t} (x,Z) := \mathrm{m}\mathrm{i}\mathrm{n}0\leq j\leq \mu | x zj |$.

Article (English)

### On moduli of smoothness with Jacobi weights

Ukr. Mat. Zh. - 2018. - 70, № 3. - pp. 379-403

We introduce the moduli of smoothness with Jacobi weights $(1 x)\alpha (1+x)\beta$ for functions in the Jacobi weighted spaces $L_p[ 1, 1],\; 0 < p \leq \infty$. These moduli are used to characterize the smoothness of (the derivatives of) functions in the weighted spaces $L_p$. If $1 \leq p \leq \infty$, then these moduli are equivalent to certain weighted $K$-functionals (and so they are equivalent to certain weighted Ditzian – Totik moduli of smoothness for these $p$), while for $0 < p < 1$ they are equivalent to certain “Realization functionals”.

Article (Ukrainian)

### Exact constant in the Dzyadyk inequality for the derivative of an algebraic polynomial

Ukr. Mat. Zh. - 2017. - 69, № 5. - pp. 624-630

For natural $k$ and $n \geq 2k$, we determine the exact constant $c(n, k)$ in the Dzyadyk inequality $$|| P^{\prime}_n\varphi^{1-k}_n ||_{C[ 1,1]} \leq c(n, k)n\| P_n\varphi^{-k}_n \|_{C[ 1,1]}$$ for the derivative $P^{\prime}_n$ of an algebraic polynomial $P_n$ of degree $\leq n$, where $$\varphi_n(x) := \sqrt{n^{-2} + 1 - x_2,} .$$ Namely, $$c(n, k) = \biggl( 1 + k \frac{\sqrt{ 1 + n^2} - 1}{n} \biggr)^2 - k.$$

Anniversaries (Ukrainian)

### Oleksandr Mykolaiovych Sharkovs’kyi (on his 80th birthday)

Ukr. Mat. Zh. - 2017. - 69, № 2. - pp. 257-260

Anniversaries (Ukrainian)

### Mykola Oleksiiovych Perestyuk (on his 70th birthday)

Ukr. Mat. Zh. - 2016. - 68, № 1. - pp. 142-144

Anniversaries (Ukrainian)

### Motornyi Vitalii Pavlovych (on his 75th birthday)

Ukr. Mat. Zh. - 2015. - 67, № 7. - pp. 995-999

Article (English)

### Shape-preserving projections in low-dimensional settings and the q -monotone case

Ukr. Mat. Zh. - 2012. - 64, № 5. - pp. 674-684

Let $P: X \rightarrow V$ be a projection from a real Banach space $X$ onto a subspace $V$ and let $S \subset X$. In this setting, one can ask if $S$ is left invariant under $P$, i.e., if $PS \subset S$. If $V$ is finite-dimensional and $S$ is a cone with particular structure, then the occurrence of the imbedding $PS \subset S$ can be characterized through a geometric description. This characterization relies heavily on the structure of $S$, or, more specifically, on the structure of the cone $S^{*}$ dual to $S$. In this paper, шє remove the structural assumptions on $S^{*}$ and characterize the cases where $PS \subset S$. We note that the (so-called) $q$-monotone shape forms a cone which (lacks structure and thus) serves as an application for our characterization.

Article (English)

### Are the degrees of the best (co)convex and unconstrained polynomial approximations the same? II

Ukr. Mat. Zh. - 2010. - 62, № 3. - pp. 369–386

In Part I of the paper, we have proved that, for every $α > 0$ and a continuous function $f$, which is either convex $(s = 0)$ or changes convexity at a finite collection $Y_s = \{y_i\}^s_i = 1$ of points $y_i ∈ (-1, 1)$, $$\sup \left\{n^{\alpha}E^{(2)}_n(f,Y_s):\;n \geq N^{*}\right\} \leq c(\alpha,s) \sup \left\{n^{\alpha}E_n(f):\; n \geq 1 \right\},$$ where $E_n (f)$ and $E^{(2)}_n (f, Y_s)$ denote, respectively, the degrees of the best unconstrained and (co)convex approximations and $c(α, s)$ is a constant depending only on $α$ and $s$. Moreover, it has been shown that $N^{∗}$ may be chosen to be 1 for $s = 0$ or $s = 1, α ≠ 4$, and that it must depend on $Y_s$ and $α$ for $s = 1, α = 4$ or $s ≥ 2$. In Part II of the paper, we show that a more general inequality $$\sup \left\{n^{\alpha}E^{(2)}_n(f,Y_s):\;n \geq N^{*}\right\} \leq c(\alpha, N, s) \sup \left\{n^{\alpha}E_n(f):\; n \geq N \right\},$$ is valid, where, depending on the triple $(α,N,s)$ the number $N^{∗}$ may depend on $α,N,Y_s$, and $f$ or be independent of these parameters.

Anniversaries (Ukrainian)

### Yuri Yurievich Trokhimchuk (on his 80th birthday)

Ukr. Mat. Zh. - 2008. - 60, № 5. - pp. 701 – 703

Obituaries (Ukrainian)

### Alexander Ivanovich Stepanets

Ukr. Mat. Zh. - 2007. - 59, № 12. - pp. 1722-1724

Chronicles (Ukrainian)

### The international conference „International workshop on analysis and its applications"

Ukr. Mat. Zh. - 2004. - 56, № 12. - pp. 1722

Article (English)

### Coconvex Pointwise Approximation

Ukr. Mat. Zh. - 2002. - 54, № 9. - pp. 1200-1212

Assume that a function fC[−1, 1] changes its convexity at a finite collection Y := {y 1, ... y s} of s points y i ∈ (−1, 1). For each n > N(Y), we construct an algebraic polynomial P n of degree ≤ n that is coconvex with f, i.e., it changes its convexity at the same points y i as f and $$\left| {f\left( x \right) - P_n \left( x \right)} \right| \leqslant c{\omega }_{2} \left( {f,\frac{{\sqrt {1 - x^2 } }}{n}} \right), x \in \left[ { - 1,1} \right],$$ where c is an absolute constant, ω2(f, t) is the second modulus of smoothness of f, and if s = 1, then N(Y) = 1. We also give some counterexamples showing that this estimate cannot be extended to the case of higher smoothness.

Anniversaries (Ukrainian)

### Oleksandr Ivanovych Stepanets' (on his 60-th birthday)

Ukr. Mat. Zh. - 2002. - 54, № 5. - pp. 579-580

Article (Russian)

### A brief survey of scientific results of E. A. Storozhenko

Ukr. Mat. Zh. - 2000. - 52, № 4. - pp. 463-473

We present a survey of the scientific results obtained by E. A. Storozhenko and related results of her disciples and give brief information about the seminar on the theory of functions held under her guidance.

Brief Communications (Ukrainian)

### Remark on the Lebesgue constant in the Rogosinski Kernel

Ukr. Mat. Zh. - 1997. - 49, № 7. - pp. 1002–1004

For every n, we compute the Lebesgue constant of Rogosinski kernel with any preassigned accuracy.

Article (Russian)

### Uniform estimates for monotonic polynomial approximation

Ukr. Mat. Zh. - 1993. - 45, № 1. - pp. 38–43

The uniform estimate is established for a monotone polynomial approximation of functions whose smoothness decreases at the ends of a segment.

Article (Ukrainian)

### Properties of dzyadyk's polynomial kernels

Ukr. Mat. Zh. - 1985. - 37, № 1. - pp. 130 – 132

Article (Ukrainian)

### On a constructive characterization of functions from the classes D r H ω (t) on closed sets with a piecewise smooth boundary

Ukr. Mat. Zh. - 1973. - 25, № 1. - pp. 81—90

Article (Ukrainian)

### On limiting values of an integral of Cauchy type for functions of zygmund classes

Ukr. Mat. Zh. - 1972. - 24, № 5. - pp. 601–617