Koshlyakov V. N.
Method of averaging in the problem of stability of motion of a body suspended from a string
Ukr. Mat. Zh. - 2007. - 59, № 4. - pp. 467–475
On the basis of the Bogolyubov-Mitropol’skii method of averaging, we study the problem of stability of the vertical rotation of a body suspended from a string.
On the 90th birthday of Yurii Alekseevich Mitropol’skii
Berezansky Yu. M., Gorbachuk M. L., Korolyuk V. S., Koshlyakov V. N., Lukovsky I. O., Makarov V. L., Perestyuk N. A., Samoilenko A. M., Samoilenko Yu. I., Sharko V. V., Sharkovsky O. M., Stepanets O. I., Tamrazov P. M., Trohimchuk Yu. Yu
Ukr. Mat. Zh. - 2007. - 59, № 2. - pp. 147–151
Ivan Oleksandrovych Lukovs'kyi (on his 70-th birthday)
Korenovskii A. A., Korolyuk V. S., Koshlyakov V. N., Samoilenko A. M.
Ukr. Mat. Zh. - 2005. - 57, № 10. - pp. 1418-1419
Oleksii Mykolajovych Boholyubov (on His 90th Birthday)
Koshlyakov V. N., Mitropolskiy Yu. A., Samoilenko A. M., Urbansky V. M.
Ukr. Mat. Zh. - 2001. - 53, № 3. - pp. 294-295
Structural Analysis of One Class of Dynamical Systems
Koshlyakov V. N., Makarov V. L.
Ukr. Mat. Zh. - 2000. - 52, № 8. - pp. 1089-1096
We develop the method of structural transformations of dynamical systems (proposed earlier by Koshlyakov) for systems containing nonconservative positional structures. The method under consideration is based on structural transformations that enable one to eliminate nonconservative positional terms from the original system without changing its stability properties.
Anatolii Mikhailovich Samoilenko (on his 60th birthday)
Berezansky Yu. M., Boichuk О. A., Korneichuk N. P., Korolyuk V. S., Koshlyakov V. N., Kulik V. L., Luchka A. Y., Mitropolskiy Yu. A., Pelyukh G. P., Perestyuk N. A., Skorokhod A. V., Skrypnik I. V., Tkachenko V. I., Trofimchuk S. I.
Ukr. Mat. Zh. - 1998. - 50, № 1. - pp. 3–4
On structural transformations of equations of perturbed motion for a certain class of dynamical systems
Ukr. Mat. Zh. - 1997. - 49, № 4. - pp. 535–539
We consider a general method for structural transformations of one class of dynamical systems with gyroscopic forces, which enables us to remove gyroscopic terms from the original equations of perturbed motion. Without changing the qualitative properties of these equations, this method simplifies their investigation.
On stability of motion of a symmetric body placed on a vibrating base
Ukr. Mat. Zh. - 1995. - 47, № 12. - pp. 1661–1666
We consider the problem of stabilization of a symmetric solid body rotating about a fixed point and show that its unstable states can be stabilized by vertical vibration.
Ivan Aleksandrovich Lukovskii (on his 60th birthday)
Korenevsky D. G., Koshlyakov V. N., Mitropolskiy Yu. A., Samoilenko A. M.
Ukr. Mat. Zh. - 1995. - 47, № 8. - pp. 1136-1137
Generalized Euler equations in quaternions
Ukr. Mat. Zh. - 1994. - 46, № 10. - pp. 1414–1416
The quaternion analog of the Euler dynamic equations obtained in [1–3] is generalized to the case of an arbitrary trihedron connected with a body.
Instability of a vertical rotation of a heavy body
Ukr. Mat. Zh. - 1989. - 41, № 9. - pp. 1214–1221
Equations of motion of a heavy rigid body in the Rodrigues-Hamilton parameters
Ukr. Mat. Zh. - 1988. - 40, № 2. - pp. 182-192
Algebras of symmetries of completely integrable dynamical systems
Ukr. Mat. Zh. - 1988. - 40, № 2. - pp. 192-198
Koshlyakov V. N., Lukovsky I. O.
Ukr. Mat. Zh. - 1984. - 36, № 5. - pp. 576 – 583
Kalinovich V. N., Koshlyakov V. N., Mitropolskiy Yu. A., Storozhenko V. A., Temchenko M. Ye.
Ukr. Mat. Zh. - 1983. - 35, № 4. - pp. 448—464
Equations of a heavy solid rotating about a fixed point in unitary and Hermitian matrices
Ukr. Mat. Zh. - 1981. - 33, № 1. - pp. 8-16
The gyrostat equations in the Rodrigues-Hamilton parameters
Ukr. Mat. Zh. - 1974. - 26, № 5. - pp. 657–663
Application of Rodeigues-Hamilton and Cayley-Klein parameters to the problem of the motion of a heavy rigid body around a fixed point
Ukr. Mat. Zh. - 1974. - 26, № 2. - pp. 179–187
Bilateral bounded and almost-periodic solutions of certain systems of differential equations with a deviating argument
Boichuk O. F., Kalinovich V. N., Koshlyakov V. N., Mitropolskiy Yu. A., Storozhenko V. A.
Ukr. Mat. Zh. - 1973. - 25, № 6. - pp. 618-629
Equations of motion of a heavy solid about a fixed point
Ukr. Mat. Zh. - 1973. - 25, № 5. - pp. 677—681